If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17.x^2+5x=0
a = 17.; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·17.·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*17.}=\frac{-10}{34} =-5/17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*17.}=\frac{0}{34} =0 $
| -1/3=x3/4 | | (2x=6)-(x-7) | | -1/3=x1/3 | | 2x-15=x÷3+30 | | 2x-15=x÷3+300 | | 7x+4(2)=3x+6 | | 6m-3m+4m-5m=16 | | 11x^2+18=0 | | 7x-1=5x+25 | | 7u+2u+2u-11u+3u=6 | | 8x-4x=30-12 | | 14/5+1/6t=5 | | 9x7=(x7)+(x7) | | 131-(5x+14)=5(x+8)+x | | 9+3.5g=11−0.5g9+3.5g=11−0.5g9 | | -4=x-5/8 | | 6(7t+1)-11=t-(t+4) | | 6w+w-2w=20 | | x-12=-72 | | 3/7m=-2 | | 2r+5=16r+7 | | 14c+2c-16c+4c-c=18 | | -1.2x=4(x+2.19) | | 4y2-64=0 | | 7+15r-6=8r+14-6r | | 5y/8-42=8 | | 8.77x+25=76.9129+5x | | 6/7=-3v | | 4x(x-10)=8(x=3) | | 15d-3d-9d+3d=18 | | -14=-2/7x | | 10x+19x-8+1=5x+1-8 |